% 'FormXob.561c40636c4d8953c975efcd6af45b5f': class PDFImageXObject
/FlateDecode ]
/Height 47
/FormXob.1cb322d4168a0050de0ae884340fcb8f 25 0 R
Derivatives Derivative Applications Limits Integrals Integral Applications Riemann Sum Series ODE Multivariable Calculus Laplace Transform Taylor/Maclaurin Series Fourier Series. /Length 698
509.5429
/Width 920 >>
endobj
Forgot password? 0
Obviously, yes. /FlateDecode ]
260.2323
Gb"0W?*>1t%#*[)1p`iX'd,T+Z@r>)1p`iX'd,T+Z@r>)1p`iX'd,T+Z@r>)1p`iX'd,T+Z@r>)1p`iX'd,T+Z@r>)1p`iX'd,T+Z@r>)1p`iX'bXY+6F)e(>8Z9l1CKXO+V>2Ai(TSBd&[S2E2WeMd`d;TM]FoG:Q)V>C.5=dg&c9!P>K$M'E`Pt(05oNpR9tSL:tP9Su!pGG^eP]?;eK!JX[-N"b2u'Bj+Kaqn*IX9GB[8QGVJq^3.,bHHcON*NfbK1aCJVW2005+YoE5I..7r6X"aO#sCT&aN,E;dn?\WL:r9OSfeM#eFc:#AFK.$[CPCUZlRH3#&is-H$Q>GY;ni%Vb=X^+6nf;G9=9ZhpM!jkW6tMu;h93mp?[TW0]!=IP>?Tn_WFDXZFD9@s6dtqK]-7m!c;W!,"^YLWANP$T"$c\X.Cj=P;ga#`ZKl9!]POE;=/fokDu@.4nZp&d@;j0%]5BtKS'Z;t6Mf3=CJpoclf88->@2cXnm:A:'+8utlr-CA:Y@C=m*abNLH>=jkp1AAhN0oa8Z9l1CMK.I;Xcm1;,RG;\BG-i1?1lplI@@\qp^s[eH!oO[JLWhDZbs#5FRTdid:kYm1e%i1^T1gG]P>+j:F[,DD*>p*hRGsN1H!)FjSkX&g!1Ar:(8174knFQP+l\iLe+>;A=EQH[l:n2>QTg/#BP[#*?dfNfQ*,68r`PI9B>0KP-WVRX-iWa)=18lH4B6#'CVkj5)j%p'Od[#MX6@gc`FSl8pa=&QfBg6dU[Tkcuc&Rm3C4>9>s2pqMEpTsr[q$,?=u2jggcA4OVXq*^>B\`?mCcg=RLp\P6tF`Fm)tfZfmBtL1nFKo*10Q8`V09n8Fps\ZZ')Y[U1Hic,Gj[dmE?D(`AbqK"QIm@AP5+(X$,)'iJ[?NW"s0b"#`. /FlateDecode ]
/Subtype /Link
/ColorSpace /DeviceRGB
La série de Riemann de paramètre complexe α converge absolument si Re(α) > 1, et diverge si Re(α) ≤ 1. 324.3469
endobj
<< /BitsPerComponent 8
La série de Riemann de paramètre complexe α converge absolument si Re(α) > 1, et diverge si Re(α) ≤ 1. /Filter [ /ASCII85Decode
/ColorSpace /DeviceRGB
endobj
Gb"/fm>e5$$jCqVLIP@V.oe/H_$N!!$iXnXnYe?oToM&eF#BXmg?,-([!%H+$9sk_IrrdpNaPFeP!-@*($sRdG1je*qB\T`/8tLh-"io-A8$MkAN.n:;]j+[rn?_NP9CBqaNffJn7Jf$m*3?g".+i%cE]lo5RC6C;8L>$bFD"EO^^0&-VgEGVSU>[ipPDA&-nQq8;;A1.^q+]>O?3L?f235JfT3a/3.dqT"gTd#N^;EadH\rjNUB]fG#Kmba\MVEs[$83N3lP4+^s?k";[^\d.=We^S3Q. /Border [ 0
/Text
/Filter [ /ASCII85Decode
!#3`IA;9UO)~>endstream
/Text
0 ]
527.9469 ]
A series is said to be convergent if the sequence S1,S2,S3,…S_{1} , S_{2}, S_{3}, \ldots S1,S2,S3,… satisfies. /Height 100
<< /BitsPerComponent 8
/FlateDecode ]
endobj
/ColorSpace /DeviceRGB
/Type /Action
/Width 47 >>
stream
/ColorSpace /DeviceRGB
/Height 50
12 0 obj
% 'FormXob.99c434df2549998abeb9d1b53a8c8acd': class PDFImageXObject
stream
/Filter [ /ASCII85Decode
/Height 90
stream
/Type /XObject
/Width 560 >>
□_\square□. /ColorSpace /DeviceRGB
0
Through Riemann sums we come up with a formal definition for the definite integral. Pour assez grand, on a par exemple d'où , la série est convergente. /ColorSpace /DeviceRGB
Gb"0Rm>g3T&;B)us$]F.m78I_@oGX@Jf`-%E\O#D@pi!'lhIr?`Tt-I)Sk)l[eo:A#_0$Og@8+pRWJ.VUFVs65+i.=UEo^E>D2Reb>8^'tUO5YtG[9Bm57a_-hKkeZ8s]"=@`(HHm5PBQOM6;L^i4l&hVReO;j7-/mNT8V)VStsi]jt1LGrSoH.;_0;g;*LY.f]%9F`Qiok4sG2O_.201b%B(q,s;_'X?7?@Q;mQ>S&ge8qUrOCXf6f?-$>+,j>4p`oFP5shhL,F4n[1J"(M:71U,fBCnl#td>!tZ36^0mF2l@8\":55VidmT7U)JAWg149Z_WF>T3Y\!1e[*JbK4D@r]CZ*YC*@bEbru:lF`N\s8/&:1uHkKi&L)tWOiE,\j5-?F<6\X9mia'LpF!]"WX!-Tc'a1DYR2tb'4]"Csn$]=$7j5\>5^qo*-`p>Ig,lj6q`I-!gCa61Of"%%2EA^nIah1Ht6+ZB^9;I;%'RrCsYB8Ng#8%;=pq)phNoCb\#lh[Q&J](Xgb`Dr=gGX8[uh(Y;-F-b_ChWoks51WLZgSjH\E&[daOl,'9Ae/7jSeYq7p7.Z;B5qT2@eF#E)N;-9aKNjWg,,IH`mmIk0!dgE#'sgbZA$6"_"2M+D56RQ1ML[Mh8j5n&*UjhPY&H]I]&"(f!o>H"/[_dF4b0Bl0K9F)[kL51d`;3!;fT;&\]91Df+4,YZ.9!J#Yu@%ACjWti76NKi=Z?B!CA^7W4j23JUV"kd@>UH)oB^;Clnu+#M7NF">DpHL;m=dQ! % 'FormXob.1cb322d4168a0050de0ae884340fcb8f': class PDFImageXObject
% The standard fonts dictionary
/ColorSpace /DeviceRGB
endobj
Gb"0VmB5P!%Y`lss$`]K\tg`%4!A"GbjtZ/lP`)l`nc_8T-uf:qB7p_REM=.ZPRai9:KB-KZ[`)L1;\dc3)L#=8dC+m%mHiP$l`"l,A_%P';[CXFE$QsML*Nm9-bVKnP9^[I.N]"'P]9$r+q1'n`7MsJh-V@f:l/7kTF34_]0f$Ur`]-g&1J.n]jI9(3@#C'Y"uO>V;OCd?S1'(/V1W"Cbpa_g`Q/;e)WO47bU=LeP&F+kJ13rW(sj*I8mt3Ri0Jb3ap1Tp1;\R]3)L#=8dDidRo;LYMNJJT1rbAMQr,oS-/Y6`!E4r90VC-qPerC-_(GKFPRj-jA:suCEM=.ZPR_TQ2lD&='I+h2BT*V$0V``/9>3FJ"/ZnQ@6e=m."rP8K3Rok.3C7_a9Vkdj$Y??-lq*+Dbg+Y.7QcDckn-&@7KM>Q@*br#>?j-_LTWc;$o*O#Iic`;a+THOV%dS`edT\;*)35hjha+lEuQp*tU=e`[Sdn^`_-$;Vu>^efdPO#qHmHJ-$Ts6XuW7Kc-_N2e!H`FG5*`&l9\qChSb@V(eZdg;`M&N;mmPWa0O0s;7jC=-;Ap^'G/PB]'bIaW7kaZ1^/,=]E7Rim*Q$GJ+bZ:WekXIaD>4g]*Q9SA5F5K":7,dZUqaYu!lE_i5!OX6Pr6biK'F^G7YQGElD+%,XKNk%ka>K2uJgCj1*]AY?M!OZkD>\)$2?$&Z#+'+lY_m>Eq$n?2m>8gk^Bh%oK/[+mJeAC4h;8,.WQKLE/1/-H0>Kr#e]]esLr.*K[IP.p;_CiEqa:G>rki#[RoFg!$#>G%1dau]kkJTj8"rPqu>PHe5GF'DupY=ZfGG&oGDo5a6Y'SYN]gOgM!E4r92H2"_/hhQU@*Gs*:A?`+$VX':M/MAVVAL1fJlh*uC3:GQ$1$KX36CIiVI[+bIA\Z"B-qFf9_5SpJ&N:gTs!GYVAL1fJlh+!)Ig0:NR?t_CDS?_TW5Gm]ejW)qG(8#c:llVR-&%*s,,])L:WNYQssU5TebO-PHj0MPQ+D^/hm)P>[TUU%!`VP9,_u)q44i;M";"u?Hp.=JnrI59JJ5Qmi$L:rG!5PE'XeN+^O8p)8'Kborpmmtjf5>+iJU;PPUs+`*eS/[>4q1&!LIWa_G,,inoqJ%'Agh..`m'dg'or$OgeLghS-#A>kTCA91ir,chGptZ\!a/ekGk)D[XBsho(F]d:%WAXq6f]*hSPF*bpiX^Y?SWT7]13-U>cY)$I1%>tr!3b/OhtL$lDh>CNmh-%!fR4Mf=E>A9_Y-P'"]2q0eK*arMRS?1Tq$A!f(1GR._X;!eDQr$)@+-6X`^R&4VdZfEF1sZ@B]RUr+I%f[#ofrqeF$laDQk@$p$/CmQb$qcg,0-pkF65uNEfp3KIR!e@@JQs&u[f"(;u"L*8M7TRe%:_,F?g_TiSNrf^,pMa'Y$sk8"LB8)I$_dLSspGtXinlaB+"PLXHe8qigtl'r#b`:m_1l/7cR3VXOZ+P5B8j_Y!l.K"kV)C\G]`(AZaW$]>eA30Vp#c&t5@K_k2TVO_+"-e68o&:q^/'\kGgQCaE[g3'"C+h8FLIJ>2gIoZK)M5mIJ^V@^REdAZI@e3R?F[f/:#kW;A:T19)$cjWn4BT897EK\05=bP%laj0-h'^/1V(c$@^)@RH4?tX5pPRN8)`_T_6F1>s98!._cP0D>GHzz! /FlateDecode ]
3. "#*[*hc,6"XisUX[fiR'6/).&b7mPBgRbTrGKQRCha$C1Pf%Q?-%_R88C>$O8OLG#0tL9%q-"V-kQ?9NBb@[623?%MnRop:^875ZWbDQ*cXKs3V3o54.^HN,Lo>EKsRp/1K>c52`0%Nocal'``3OMZe^P4VE]BhA_T<7hp&07dBg7DtSb:cZ!88,#N0SaTUXi-;`+kfYbTXI`OR"k$p(um!endstream
49 0 obj
237.2799
/Type /XObject
/Width 373 >>
/Subtype /Image
/Length 721
/Length 1900
339.3469 ]
841.8898 ]
/FormXob.11b7770984f92ff1d192318027a90f81 13 0 R
63 0 obj
stream
/FlateDecode ]
33 0 obj
% Page dictionary
/ColorSpace /DeviceRGB
Gb"0Um;Cu5&;=QMs$^-BD57qWTYQrk!8cnj9[[Xta2aH]1je*[!!!j[rQfft!*cuHhQm47`0Kka#f)0s0*%6@?2uB^]`:mGH3*`*s/so==0J\AXJ5NXd,^]:P]gs"'Wg02OePLoe-Y=>*,=HE"S#rTbssVZW(Sr1HBE"e@`#@(ci6F%,B*rM4Q]=G\Gr%jJUGs%gbg(!Z&3T>>PJDor'e+P#7-tsb)aTik0js/hX;A4YPtlTdO7s?mB)1@`GiLZ.GhR+Lq(;9:n4jolon\=AJA!`t9Utcr_M3n$K=9d1*OtB;mh5q[[m/TP3@C^VQoc&K7T.;qS88-Vj*nNbnuqV$K&-okCmZ?s7G%c)r?`dt3N%N&3Y-ONU3a9=m)ROL4$Nog]:fo1KLp-re7X@H,L0qm^.p^Pe;a0Z1\N)V5TFV3Fg".Bf@!?Hgb?9I8#hl[!OgEc0BQgk3b)aZgt[=FBYo$].\-=c`sOe&/'WQ@%?1UYVF/&>>V9Lj!VXf(D"h*,ag"R;<=R>aKV:TgAU?VEiPuBr=h^>IdrbM@c"(h??jY]q[4K1aW@OM@D3HkL65hgcVAVbol@ZfId+_1M8*7=VeoejO6]5E>/pkk9`31?:8Q,!MY:.*Ik2\Ec=YWSd@53N-0*j-q6Q3YHct_q[bTrt%I&gER),H5_=roK<2Zjb#Z:?"QW94#lcH4#dX7I_QqPGCQsC),Zp`F0VQKB-FXHf3Q]^RA>_Q2N$pRHplC-@M0n?=?mpTKo:YL2CBA0Q-02FB3b7Ft1cS0*r"s8G@Un^i-Xh==#682`!PrsiA7g(1DUkA00SkJ$=#U%%W*+P[RhlDc=?4K$bPLWp758JW-3(Kj7clljiZeX,n/-?b]kU^dD"XdiEb#-F"j(X/NMBC7VGKT#-! /Height 103
% 'FormXob.424cecb5f604fdee17dbdaa276ffafa5': class PDFImageXObject
Gb"0Th2X!9%RB!cs$K:$S^s%2P:H&T(g,\OFAp0r"+@W?r<<6%!!&[Xf7.CF!MlL@JIBL!!&36ps(3V[,^Om+SI7+h`rQ/ofB^KDN.?/fI86j'=q=$@%VN#[/7YE#\iX(%n>W<2nJ-pO^E!TVf\8WDf!#=uEi=N@WE8`bV!%Qni_BET8i50I6!*$a\KL=,O^kLeK!2tGB#`#)'JIBL!!)N^b&Iq+-!uHt"!2'DM,92;9#;-u$!'g_#7lUXR%U:t'!.YE$O)PA.*Op&.!!!c'*oR[;3cO%;!!"M,4i/@Uodp@8ktrJ,qI4+!+#<<5Pt+-F*CYH%gIl.%RXg=#cY?*VjuR$_a?e-f7q`J#Ch[;H)JBW(S1GTuKq>('[J41K'9Ci^TYVA_Ge.Kr=R>@)sSCk6srRk$5Z3)&+u`_$^7kG$SLoP9Q?l8%99**h-oc"4rC7Y`tJ/Kj4^Nli'0XhT&&fO'Iaa'nDe1o@]]A&V34HOW/%;Cber.Jk$2&-&j4G)"%T1fS-$V^VdsRZUP+5[!4^f&-(S$-1n#/`BD+CrY7M5<4!4+?%]0P"h+Ta9Re_8aBR]G!_P*4N/N)dLX`-X)E3"ppFr74dl0TK]D8lTo9Wc]fO:7)lbP&q")N,iWckN&G+b;gn&6,hCE-Km=Vpr>%]N%-21!DOo*O9kJ1Ah"#iY-AgG3o&8Wa6rb,biKg't:D241Xa38#JBPl5-O.H%:cI058SUtQa-5JbW:%l*D]Q)+1P#u'SZH17W6_tKr((qon`4)\(T^FcY*UqO[6DB%j5j6>`]-Bq"1=lX2^QH0\bc;bbuJpcHJO[:Cnfe:#*V\\3l^\deQ+*/1uPkf:lI/fAOHc_Pomhh*r.q;#@d`RGqL2?j?!NJqY2Ci;3-)o`2E%]N83N&NC^7hun9=4rj\[3_Q51mW']M;*/X$+PpcOH<5%$@c=NG/cRZ2HC.Yak9^F25c_3U[O]U$!nJlN4]eb"A\;KWa8e0@mr3qZo]^6_2g97?*eYM"H%BJt4b$7!d-b!TmF%Kil+4jp&i\aaj!USp*%PkIhlR-#b#YbNq]S$8S])ri$@5j:-?;PX!l?9L%p?L1,foL4&EZGHLsnqT_;8ns$`]X&`l#f+Z;*q'bg5,mahEKfKCsk9C?_*.L%$C;%MKm)JZFOHJ:9I+@0Cq!=L]f.CofJ8KMAk?<40#\OPPFW9"=T;ZPJ\[kiR:CaB%)kgGF]-_e.3>>cPa$I3=h$-fK'Z3K)]Qp'6)E)qHc*KnHT1.M\L2WV]#Cb_h)P*'1jDBRV53A,R)m";E%HcOReP6F_,(,G,:/*ZZA!gnsrhJG?1k[$'0tJ5`#7)j,Xd,oLo"cL@VXAJ&j>#D(Nbet_+PL&Q&&6$QlB^sK8AM$9#T<1A*us8TC090oh'C_WChja)$nP]@7QB^D?E%IAD9S"82aXoN)5fqfDeue(_"ML8X>K0T#epgW877BoL(]^"kW@VcE;&Sf4gf=;']f9Kp'^]",XSG('XQ%'][W,m0,1A3?()4YKI/_4lI%d2^TeP7t+Vqt1R@3p3]SRqE%H0*jOp2LX]JM>/&+KElp,k$tD5@e]5iN(VML0%/W\(`X/Y_EXpALebo1n>o_kPmA,_aW39h8V7pq"p>bhmATe`r(d3Y)db>0+H*N2W`g%:GL^hoBV.6WWRrRWEhu[[Z7Es&QL]n$4A5FqW$oSdOE+m%u!doQH`Uh:bg_k)J8r`iR(7Y^<7WoR0Jj%jlgqu\3Cho85nEbr+Y!h/9m;ouFhlXScu8VPnRo@BBFf%+?J_iYm2[rf-"XVS2$FKFq4KN-[!t/eT6e@s,rW-puS\WE0N6@PA-OHD$m)1k;2+,>QQJj4#s]N2K"p3VjN>MV2drG-@u#Sae$]Cs..2h07_?W#59b_6_3HPW>,Pk.5@cEc5P";oMK^aDk[J>Fi;I4^TB>l6rD%RH]h(N+[%)^p/f'i2"=*[@2*4pO8k+ohVln]tZ("FUbb3">q=$@%VN!rpX-VadE?of>RS:Ed.5&hbH!7UHTi=PWAE8fpa!)1FCKL=,L^kJ7"!&,FS&Iq+!!uGj(!5N^4a,!4mHg(/`Xc@IAo)etBi6O3LT_iZBZoX5abmsfAN^(j/!m1HGKg*O;\G6. Georg Friedrich Bernhard Riemann (German: [ˈɡeːɔʁk ˈfʁiːdʁɪç ˈbɛʁnhaʁt ˈʁiːman] (); 17 September 1826 – 20 July 1866) was a German mathematician who made contributions to analysis, number theory, and differential geometry.In the field of real analysis, he is mostly known for the first rigorous formulation of the integral, the Riemann integral, and his work on Fourier series. /Height 90
23 0 obj
/Subtype /Link
/Filter [ /ASCII85Decode
/Subtype /Image
endobj
/Filter [ /ASCII85Decode
Sumatoria de una expresión Added Mar 21, 2011 by Harold Suarez in Mathematics Calcula el valor de una sumatoria o serie, gráfica de sumatorias parciales y fórmula de la sumatoria enésima. << /A << /S /URI
715.9469
% 'FormXob.c38f78c89ff906152e05d19b581f3bbb': class PDFImageXObject
/Filter [ /ASCII85Decode
512.9469
stream
/Length 746
/Height 33
/Subtype /Image
/Width 373 >>
endobj
/Type /XObject
Gb"0W?*>1t%#*[)1p`iX'd,T+Z@r>)1p`iX'd,T+Z@r>)1p`iX'd,T+Z@r>)1p`iX'd,T+Z@r>)1p`iX'd,T+Z@r>)1p`iX'd,T+Z@r>)1p`iX'bXY+6F)e(>8Z9l1CKXO+V>2Ai(TSBd&[S2E2WeMd`d;TM]FoG:Q)V>C.5=dg&c9!P>K$M'E`Pt(05oNpR9tSL:tP9Su!pGG^eP]?;eK!JX[-N"b2u'Bj+Kaqn*IX9GB[8QGVJq^3.,bHHcON*NfbK1aCJVW2005+YoE5I..7r6X"aO#sCT&aN,E;dn?\WL:r9OSfeM#eFc:#AFK.$[CPCUZlRH3#&is-H$Q>GY;ni%Vb=X^+6nf;G9=9ZhpM!jkW6tMu;h93mp?[TW0]!=IP>?Tn_WFDXZFD9@s6dtqK]-7m!c;W!,"^YLWANP$T"$c\X.Cj=P;ga#`ZKl9!]POE;=/fokDu@.4nZp&d@;j0%]5BtKS'Z;t6Mf3=CJpoclf88->@2cXnm:A:'+8utlr-CA:Y@C=m*abNLH>=jkp1AAhN0oa8Z9l1CMK.I;Xcm1;,RG;\BG-i1?1lplI@@\qp^s[eH!oO[JLWhDZbs#5FRTdid:kYm1e%i1^T1gG]P>+j:F[,DD*>p*hRGsN1H!)FjSkX&g!1Ar:(8174knFQP+l\iLe+>;A=EQH[l:n2>QTg/#BP[#*?dfNfQ*,68r`PI9B>0KP-WVRX-iWa)=18lH4B6#'CVkj5)j%p'Od[#MX6@gc`FSl8pa=&QfBg6dU[Tkcuc&Rm3C4>9>s2pqMEpTsr[q$,?=u2jggcA4OVXq*^>B\`?mCcg=RLp\P6tF`Fm)tfZfmBtL1nFKo*10Q8`V09n8Fps\ZZ')Y[U1Hic,Gj[dmE?D(`AbqK"QIm@AP5+(X$,)'iJ[?NW"s0b"#`. Különböző tulajdonságai szorosan összefüggenek a prímszámok eloszlásának kérdéseivel. /Length 746
/FormXob.ef915955cd1d900e291dcfbe99b236eb 31 0 R
Evaluate the value of the series 1−12+13−14+⋯1-\frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots 1−21+31−41+⋯. /Width 203 >>
/Height 87
/Length 3575
endobj
/Subtype /Image
/Resources << /Font 1 0 R
<< /BitsPerComponent 8
Log in. 0
50 0 obj
<< /A << /S /URI
/ColorSpace /DeviceRGB
/FormXob.92ec843de631dccd713578c1a32ce36a 39 0 R
/Length 3356
/FlateDecode ]
324.3469
/FlateDecode ]
/Border [ 0
0 ]
/Length 2375
<< /BitsPerComponent 8
/FormXob.ad1adc6704647f41f65be9e5598dcb9e 38 0 R
!a0L%#Q@Y+~>endstream
/Subtype /Image
715.9469 ]
Publication date 1898 Topics Mathematics Publisher Paris : Gauthier-Villars Collection thomasfisher; universityofottawa; toronto Digitizing sponsor University of Ottawa Contributor Fisher - University of Toronto Language French. 27 0 obj
'd#OJC%]W%WWW>1Gm#JK#b&endstream
17 0 obj
/Filter [ /ASCII85Decode
<< /BitsPerComponent 8
/Type /Action
"*2F+OC*f]upP[u/GsS,k7Ce_$k51@rW[g9f?.HaVQhSa*<9aJ_sO)"G!endstream
/Subtype /Image
/Type /XObject
% 'Annot.NUMBER17': class PDFDictionary
527.9469 ]
/Subtype /Image
0 ]
/Width 353 >>
/Rect [ 202.1029
/FlateDecode ]
/Type /Action
/Contents 110 0 R
endobj
/XObject << /FormXob.0fc017be651712cdeb36511d34ec81ee 44 0 R
/Filter [ /ASCII85Decode
/Subtype /Image
]@m$9Y#+>"J=?R#-D[-Hu;Qk8j<40-#QAcOb=Vb^]$Vd==Z9+f/:mtMh_!9AM-LGg69~>endstream
<< /BitsPerComponent 8
/Height 87
33 0 obj
/Filter [ /ASCII85Decode
endobj
/Width 567 >>
/Resources << /Font 1 0 R
<< /BitsPerComponent 8
<< /BitsPerComponent 8
551.6968 ]
/Width 567 >>
/Subtype /Image
/Rotate 0
595.2756
/Subtype /Image
% 'FormXob.99c434df2549998abeb9d1b53a8c8acd': class PDFImageXObject
Gb"/ggQ$n?$jHJ,O,ipB,nu0q)!Y>LRAX=/e]1T9PdUc]"V-D3=+1]Y%V]Xi%[e]'*2,41r+@A8Al>qrD1e]ul"@HRa2Kq;[peMk\9VL\U'NP(5sCLF9UL3L:@bkAj.t@rq3g'Na2PoJoEtr$bsiBcHfT4?&HDe2!!!!1$icH(8p'CA^n`1*4[S;.G1(_OVU?!AV! /ColorSpace /DeviceRGB
Niewenglowski, Exposition de la méthode de Riemann pour la détermination des surfaces minima de contour donné, Annales scientifiques de l’École Normale Supérieure, 2e série … /Type /Action
<< /BitsPerComponent 8
/Width 50 >>
0
/Width 520 >>
/Subtype /Image
/Contents 111 0 R
Gb"0Rd>ls8$q*tks$m:t]'(?'D-::\8fZ^Z)T:3g'V"OV"TUO6r`X`-B9'h4+?J6@TR+sUJr@C4)]QrOtT1'2&&7Z34U=bY6I,@FP\[)`N?<>[;C!bN0:Mi<0hL!_(h?rg^Ca9\/5(bIKEAeddnN.>&bd39fC'h4+?J6@TR+sUJr@C4)]b\M9#+4G*_+;o`/ntT4DqGbP'&N'f4MR"+BO?,.p`A%8ZW$^"N!]1CnSQ>-R^SYSSm=og^Z=-mmt5DfL0tT&5u^TZ]^>CB"0YQNR_Goob7U]ehL>=2=93^#?G4*pE0VYaTJYHN]f4j,"JYqF#dJk(,-\X,JfKTT:*oKGVe0JNe6Z&RHl\#5Zt\7rY)[T;M7GN?\=$'N4,31O956K]([%+:MAU`*3ZWC=EGHm-Cl. /Width 83 >>
Gb"/c_$U/b#XeRjO-\(fBN'h`G#\/^$Y'):7%.kqC.\f`SL:[6ZL&*b?/l,EKO%)3To,mDSkMGNR(qOg=^=>1Y,a8#\A-DandQS?a_nN2V#s_+b~>endstream
358.8569
/ColorSpace /DeviceRGB
/Filter [ /ASCII85Decode
Denjoy"). << /A << /S /URI
stream
0 ]
the definite integral! /Height 103
/Type /XObject
% 'FormXob.5fc7a8bc08eb1bb96963fef236d966f1': class PDFImageXObject
/Rotate 0
/Height 87
/Type /XObject
/Type /XObject
19 0 R
Definite integrals represent the exact area under a given curve, and Riemann sums are used to approximate those areas. /Width 583 >>
<< /BitsPerComponent 8
/Width 747 >>
/ColorSpace /DeviceRGB
/Rect [ 271.4378
La fonction ζ de Riemann est une fonction analytique complexe méromorphe définie, pour tout nombre complexe s tel que Re(s) > 1, par la série de Riemann : = ∑ = ∞ = + + + + ⋯.D'après la théorie des séries de Dirichlet [note 1], on déduit que la fonction ainsi définie est analytique sur son domaine de convergence.La série ne converge pas en s = 1 car on a Gb"0V@?7KJ%#&-hs,TX7>%pDQ,QrpaNVu&5g=]VFHotrC]"RtNz!!!#7LMd(^mK*@gR+Mn]HN=*HMerplNW9'0+c^mL!7Ko;#65l0NdCa+dc7j0eGd;e^]3e;7#;7'+'^A0(O[LG4_#H=T:4*j,tNh_k&7;GG(h]mK&b_>kssn.%>\qa+6pH-\R&*#4$YAa/@eht"7N&W9#DZ57mUqtd*E@ZqPa8I,TZG)%Qrp*)d"``>,:#s@iV&8NB.3"(cD+S^Rt!rTigCA;jB.#pN;&Gj&Acau'i6]NRKB3-q46jC&$J0*j:(!.XSeiQ&NMM=O),$?22HH/NFd1Af?I*dro)]g(=KgHb^OXtN__h7!aUrUm^D?HTn5dJIj%1eJLzzzz!'kq0rs+43pT:>[Ni7]'c[d'I(j->LLf,3/St05E*6#"7&:E2O3dI]LNi9sD'n\/eS5*B?Sthlh%Pak%Vj$j)kD4_#Wu,g=K=%mOjW*sI+ijk*<98!^hHd3[3ChSpI"6uUp`OFT;Dq#]b%Vs@R9#aE`4Lq=b3"MKg4e.K'Qtd?FlM5r11bP!ic7qaQM=8q$e_O/Up^?V0TT?kX-1Ugl4u:1M\)r#;A^)rc,1Fhch!\fp%*2o9cVEm$]C[JSFh(i7X?5nD,S?A9T48F$VX:\,Z>t;[*9/`Dp>=D2sA1RN6?S[L*E2od%pdbai5`'rERs0:+Coa>!b^3?PFb?ffsb^$.5fR\enerCuhK8h^.M`Acm9_t5tcdZ!q:_>WsH]Cqt9=.;a6XqoICOin0^k86hPBeS^FHq.KF9V8'rA`q,":KDl4/^M!8(gQ-uHJb4kNkAtk43)$g4,RuU5Ku8QLAS>29=o,ZV$Obsj#m'=*BRtBl#kOjBQjhMjtl.kj1'4/!U`(^RKi2/olGMYI9G0GeEq53&@ZCXDGYcZ#%^kg2Vac^D4oM8XZ*HN0Z'ndks&XjlHe\0>Zu$4tHgjcl&LMZNrm!%+\gpO2j='&28+WL94RG,qOlO*VTl4>of^W;RDc:iI40_`P4$W^ZO=Bk@l&Zlr]P_B]Qk23"9:QL6nZK!fX?1<6+3r.$60'f+E@9.+#FWo7+8Q5b(]\4e+]*@ZK0U.rnm1CKOhkZMN[0f(Sfrl+"_J"h!bVn=bP[Di>Y@jX`$ur6"K_kWM'Q1u&GMY3p.S/&r`9A*oOolFqP)SueaopYP5pFD'C@mGZ_5-V(cZFbDdTFL(lFGE[LTFnab:!QW4$dG!/RFe.@m041?a:0)B&GHg\Pjc@EdYrH5"P,$iG3R4Strch5R2#,)\V6'R'XthD"Nn3&GF*^?i9:`d\\:XU*A>7oH+GE*Bm?bHeobo/;NdJ"?[>!5^)[s9*K:inD._WFSW"c8"C2s_IeAAiAP8mksr3XqhDJ)1^.6EY88!Lm->;rMocGGd?HV6h^XK28`CQ&2)R-(_BNj=rX3^::GZY4(32$\i:X8J3_Zgd%SD^eDSbDO?l`@]ad`uI*K&dt=AiQ4sJ;W:OaMB6-KnYm\P*'%JkIc9q6Dq.a[\(s/,H>28F!*u@RB]l`^@,mZ&Z)`$3KU!EUX"E1;2WuBZh%spUC8n$\"+@d`TSHCmH'G`k;E`?N%3KPIX@Gu:+PN1!X._,EIqt3KU#[kt$;14FVF"C>=?eh:4fO.&FD:]q&fp@j4F>a\ak]i5cM,oG7#m3X[#O3Qg+t[9X;df<9]E;9a@KgOD+r_! /Type /Action
324.3469
endobj
/Length 400
stream
Se define la integral impropia de Riemann de f en a; c como el límite: c a f .x/ dx D lKım t!a c t f .x/ dx (8.8) Supuesto, claro está, que dicho límite exista y sea un número real, en cuyo caso se dice también que la integral de f es convergente en a; c . ]@m$9Y#+>"J=?R#-D[-Hu;Qk8j<40-#QAcOb=Vb^]$Vd==Z9+f/:mtMh_!9AM-LGg69~>endstream
/Type /XObject
/Height 103
190.12
endobj
<< /BitsPerComponent 8
16 0 obj
46 0 R ]
/FlateDecode ]
/ColorSpace /DeviceRGB
/Filter [ /ASCII85Decode
/Type /Annot >>
stream
:8o6fF4s?~>endstream
143.2429
/Filter [ /ASCII85Decode
The above series is a prototypical Dirichlet series that converges absolutely to an analytic function for s such that σ > 1 and diverges for all other values of s.Riemann showed that the function defined by the series on the half-plane of convergence can be continued analytically to all complex values s ≠ 1.For s = 1, the series is the harmonic series which diverges to +∞, and /Subtype /Image
44 0 obj
Bref, laissons tout cela à plus tard. /Filter [ /ASCII85Decode
/Text
841.8898 ]
stream
/Border [ 0
/FlateDecode ]
/Rect [ 125.8105
/Type /XObject
/Type /XObject
62 0 obj
&= -2 \ln(2) \\ << /Annots [ 37 0 R
stream
% 'Page2': class PDFPage
/FlateDecode ]
/Filter [ /ASCII85Decode
/Type /Annot >>
endobj
/Length 390
/ColorSpace /DeviceRGB
stream
/Filter [ /ASCII85Decode
/Height 100
/Type /XObject
endobj
/FormXob.424cecb5f604fdee17dbdaa276ffafa5 43 0 R
56 0 obj
Gb"0N5mdT7#Xm).IqWOD7M^Z,g6AXOnZj;oqfQ.\/=cAjcMEQQe]C?#X+lQ'l6Us9bNe.FMT6ZZMOJ39gVWuCb93:s#Wp3DCM9qrA2Plp=!ZNYOSYZMJ6XHGGY5P=I'u)V,2]*~>endstream
stream
Gb"0Rm>g3T&;B)us$]F.m78I_@oGX@Jf`-%E\O#D@pi!'lhIr?`Tt-I)Sk)l[eo:A#_0$Og@8+pRWJ.VUFVs65+i.=UEo^E>D2Reb>8^'tUO5YtG[9Bm57a_-hKkeZ8s]"=@`(HHm5PBQOM6;L^i4l&hVReO;j7-/mNT8V)VStsi]jt1LGrSoH.;_0;g;*LY.f]%9F`Qiok4sG2O_.201b%B(q,s;_'X?7?@Q;mQ>S&ge8qUrOCXf6f?-$>+,j>4p`oFP5shhL,F4n[1J"(M:71U,fBCnl#td>!tZ36^0mF2l@8\":55VidmT7U)JAWg149Z_WF>T3Y\!1e[*JbK4D@r]CZ*YC*@bEbru:lF`N\s8/&:1uHkKi&L)tWOiE,\j5-?F<6\X9mia'LpF!]"WX!-Tc'a1DYR2tb'4]"Csn$]=$7j5\>5^qo*-`p>Ig,lj6q`I-!gCa61Of"%%2EA^nIah1Ht6+ZB^9;I;%'RrCsYB8Ng#8%;=pq)phNoCb\#lh[Q&J](Xgb`Dr=gGX8[uh(Y;-F-b_ChWoks51WLZgSjH\E&[daOl,'9Ae/7jSeYq7p7.Z;B5qT2@eF#E)N;-9aKNjWg,,IH`mmIk0!dgE#'sgbZA$6"_"2M+D56RQ1ML[Mh8j5n&*UjhPY&H]I]&"(f!o>H"/[_dF4b0Bl0K9F)[kL51d`;3!;fT;&\]91Df+4,YZ.9!J#Yu@%ACjWti76NKi=Z?B!CA^7W4j23JUV"kd@>UH)oB^;Clnu+#M7NF">DpHL;m=dQ! 56 0 obj
endobj
<< /A << /S /URI
/Rect [ 125.8105
/Subtype /Image
/FlateDecode ]
/Subtype /Link
Here’s a link to Riemann … /Length 2988
endobj
/Type /XObject
/Type /XObject
54 0 obj
/Filter [ /ASCII85Decode
/Type /XObject
/Height 90
Riemann series theorem is named after a great German mathematician Bernhard Riemann who contributed a lot to mathematics in the fields of analytical number theory and calculus. /Width 83 >>
/ColorSpace /DeviceRGB
/ColorSpace /DeviceRGB
Have we made any mistake? endobj
/Height 23
/FlateDecode ]
/FlateDecode ]
% 'Annot.NUMBER13': class PDFDictionary
<< /BitsPerComponent 8
53 0 obj
/Height 103
% 'FormXob.fea33bb763dc1c10f6f75ceab4a51840': class PDFImageXObject
/ColorSpace /DeviceRGB
<< /BitsPerComponent 8
/Width 663 >>
/Width 920 >>
/Length 4175
/Width 1070 >>
59 0 obj
/Filter [ /ASCII85Decode
!#8RrrJN2W58~>endstream
/Type /Annot >>
46 0 R ]
endobj
/FlateDecode ]
/FlateDecode ]
/Length 3575
/Length 1900
Gb"0WgQJ?l%KOlRs,X>8LQ8=X.DQ3r"e>0@O_&?3&s/^QWVQ>jz!.[T8"K[Uq!!".Rhp^'BH-5Xa!!(s,kqU?6$31(a<90+=S?2bk!.r>u.q^@4!.Y>f.f]R"G0X+g!!)C+X8i5#)O5e>TX,@5!'is2Ir".R"TSN6oJs?@1]RN+HZ4oF!!$]qC]se=d*C;O!!&[_ZP!WW3#zzzz!!!#?Dtc2kc`qf^!!!"I/3I#p>6+^(:GVdrPPf6^-P?CZi9mJ5H4h:&P(Wi9!'J0C;ie7"!74Br0,8cHU@8RMlDV>5Gmfi9cJ"A]h(e'9AtH,REh$o#_uKdWPQ+p%Aln_UC&FG69,BO(TpIuD\pN3%C3]dZ&@D=XIdII-lE3Xqec.0o8CmdXr]aKsFbR5&/;C]I:TqI4d*Rk(etp,DlL;G'Fika]9*T?Ztf(`,tIce1;8e?hJ]+L=^2M.ohh'&;`D@OKW\p2Y0o#TCeh*#dW*)Z,*aap,\DoVQ=:OQAqHc+P%n__'laI/l(_)-Jd?LlbBmDC^W]H'kBg]`iCQcsh;3a;Ptg#/lGlP=eo.9iUm;RUi(4`)2M(;QU:$s:Saah2Rr&+X%V6ELeCFUj2UcTd8Z6^,*DM,Soqt=?a$nX`AbE)gID"0L4C[rrE:p-)DYPq*!k^O7<847I,'+CV$HHH8h!RO;3+Ye@+BnOeV,TVj6W1]hp[33Hsi0mP-7'UT\^g7_^&qAq%`m1Hn1[Xujlq0_1M=Y.Ae#T!Xd*@"+CgpZM:1H+2rR0a_YDUZ]IDX`]j&72eij9g-(8KBBAL,A(6sT=OE,WOd)CS5EQ,YN`pdN'*-s`YK)a-%Oq8j%@\^;Xj'PA\7Z^$or*f`0)Z'm*F.O`WlXu$3jNcInoAKSmtb/[n+e29CgR+VB0$Z2n-i,^+XfQ'=JF@/.trFns0`f]!a:s_Kt;u-VJ7P1VRs@?pD'FdOo``hQk1%f1)W3=L^JJAnb\'So-#Ai6Nd)_3)OU92o0N77@3Sn[Hj%B^P*H!-XR42VRuhkN>`9"@ir=Za[?\-%1u@]Gm3Y+(8PoE&(pjFl"lKtG#u5#@0S=JSKi1Ug\fj9'ZAWlZm#&5h2E@k-Wl;t,io=WK0stq(tUHqKdm:c%^.Dr=>71LNNB_bl4SNsWgg6PWX3mcc^68clHdqqjT4,.7V7P]Ft(MV$KWd>G&fC">G=05h7IKK[.C]gk7_pJ@NiDL?$,VRY))D5S5e(ncn,GlTX9T]+L>ZE\p-dH'4qa+pmV'j?hLO'\5;S@qM6be_?j6fgSOHQ;kE1K8,_5F>PIp-/>H0:6-Pf%``a)*q7@fL7fHZOVPDqIQpaj4iL7=+E#Cjef[p!0]GlCOM.h7+EAl#MJjjt=$qjP[B7r]N[shOZ,c,VWOQ\lO,_=\bI#*d:?RZK#VJ/U00*n(@p@a0[6nFC0mSK/7.'uPE7OA=H1omb/jDS@Ke?ou;UXQW7lU$qR3,g)EftP)p9'H-G;M:hBO-_q>BF)uhgc*rr\NL)_`p@;#8XZ5rFbSQ;6R[AWK7X'T,oZ965He;]flh0ujqq:290`[@`PG=R#KooP"p`q-S6'$o5-bdY$!#[EY$BBif*fldu"q6E&Is-jePb[&hKB7#8sYV=`_3f@T+B*gQ+%EfnEP]$;GM\OXRZ*^#J^0Co;'&q/*2tX`\[uD2-8h[(B5\Y0:2L+qT-8?jm#ih1N8eK96go*%W%5CnP>'Unue&MCAT;l>"EpT1DBd0(s,nXVTs?H0]/O@h#6Kb6ih+-E`Nge3uKl3b*nfL6*6\sL9B.fMb3"T[\@*.gX^]l1JrYGn[tQYa@"/Y8I.c=+]H6ko]hUZ5MAWmt=OVj=W'$2Vfn;0a@2! 59 0 obj
Gb"/ggQ$n?$jHJ,O,ipB,nu0q)!Y>LRAX=/e]1T9PdUc]"V-D3=+1]Y%V]Xi%[e]'*2,41r+@A8Al>qrD1e]ul"@HRa2Kq;[peMk\9VL\U'NP(5sCLF9UL3L:@bkAj.t@rq3g'Na2PoJoEtr$bsiBcHfT4?&HDe2!!!!1$icH(8p'CA^n`1*4[S;.G1(_OVU?!AV! Gb"0WgQJ?l%KOlRs,X>8LQ8=X.DQ3r"e>0@O_&?3&s/^QWVQ>jz!.[T8"K[Uq!!".Rhp^'BH-5Xa!!(s,kqU?6$31(a<90+=S?2bk!.r>u.q^@4!.Y>f.f]R"G0X+g!!)C+X8i5#)O5e>TX,@5!'is2Ir".R"TSN6oJs?@1]RN+HZ4oF!!$]qC]se=d*C;O!!&[_ZP!WW3#zzzz!!!#?Dtc2kc`qf^!!!"I/3I#p>6+^(:GVdrPPf6^-P?CZi9mJ5H4h:&P(Wi9!'J0C;ie7"!74Br0,8cHU@8RMlDV>5Gmfi9cJ"A]h(e'9AtH,REh$o#_uKdWPQ+p%Aln_UC&FG69,BO(TpIuD\pN3%C3]dZ&@D=XIdII-lE3Xqec.0o8CmdXr]aKsFbR5&/;C]I:TqI4d*Rk(etp,DlL;G'Fika]9*T?Ztf(`,tIce1;8e?hJ]+L=^2M.ohh'&;`D@OKW\p2Y0o#TCeh*#dW*)Z,*aap,\DoVQ=:OQAqHc+P%n__'laI/l(_)-Jd?LlbBmDC^W]H'kBg]`iCQcsh;3a;Ptg#/lGlP=eo.9iUm;RUi(4`)2M(;QU:$s:Saah2Rr&+X%V6ELeCFUj2UcTd8Z6^,*DM,Soqt=?a$nX`AbE)gID"0L4C[rrE:p-)DYPq*!k^O7<847I,'+CV$HHH8h!RO;3+Ye@+BnOeV,TVj6W1]hp[33Hsi0mP-7'UT\^g7_^&qAq%`m1Hn1[Xujlq0_1M=Y.Ae#T!Xd*@"+CgpZM:1H+2rR0a_YDUZ]IDX`]j&72eij9g-(8KBBAL,A(6sT=OE,WOd)CS5EQ,YN`pdN'*-s`YK)a-%Oq8j%@\^;Xj'PA\7Z^$or*f`0)Z'm*F.O`WlXu$3jNcInoAKSmtb/[n+e29CgR+VB0$Z2n-i,^+XfQ'=JF@/.trFns0`f]!a:s_Kt;u-VJ7P1VRs@?pD'FdOo``hQk1%f1)W3=L^JJAnb\'So-#Ai6Nd)_3)OU92o0N77@3Sn[Hj%B^P*H!-XR42VRuhkN>`9"@ir=Za[?\-%1u@]Gm3Y+(8PoE&(pjFl"lKtG#u5#@0S=JSKi1Ug\fj9'ZAWlZm#&5h2E@k-Wl;t,io=WK0stq(tUHqKdm:c%^.Dr=>71LNNB_bl4SNsWgg6PWX3mcc^68clHdqqjT4,.7V7P]Ft(MV$KWd>G&fC">G=05h7IKK[.C]gk7_pJ@NiDL?$,VRY))D5S5e(ncn,GlTX9T]+L>ZE\p-dH'4qa+pmV'j?hLO'\5;S@qM6be_?j6fgSOHQ;kE1K8,_5F>PIp-/>H0:6-Pf%``a)*q7@fL7fHZOVPDqIQpaj4iL7=+E#Cjef[p!0]GlCOM.h7+EAl#MJjjt=$qjP[B7r]N[shOZ,c,VWOQ\lO,_=\bI#*d:?RZK#VJ/U00*n(@p@a0[6nFC0mSK/7.'uPE7OA=H1omb/jDS@Ke?ou;UXQW7lU$qR3,g)EftP)p9'H-G;M:hBO-_q>BF)uhgc*rr\NL)_`p@;#8XZ5rFbSQ;6R[AWK7X'T,oZ965He;]flh0ujqq:290`[@`PG=R#KooP"p`q-S6'$o5-bdY$!#[EY$BBif*fldu"q6E&Is-jePb[&hKB7#8sYV=`_3f@T+B*gQ+%EfnEP]$;GM\OXRZ*^#J^0Co;'&q/*2tX`\[uD2-8h[(B5\Y0:2L+qT-8?jm#ih1N8eK96go*%W%5CnP>'Unue&MCAT;l>"EpT1DBd0(s,nXVTs?H0]/O@h#6Kb6ih+-E`Nge3uKl3b*nfL6*6\sL9B.fMb3"T[\@*.gX^]l1JrYGn[tQYa@"/Y8I.c=+]H6ko]hUZ5MAWmt=OVj=W'$2Vfn;0a@2! Gb"0WgQ(>C&cg;Vs,TqB_b-bs[#Hg&'#6M'X%F=_Lk$[Rh)jLIz!5R/LG=DhY1J.rR5UbmOWQXRKIZ!>^#64bAS_d+;+!A9c"VhULJ5M>63j'MH\FeBB70ETu3;:tVV8"oHN*GW[/4U"0WNd9NW9'tfD1K2j'5W;KMfq$FT_\P$:F6^9rF@,N/I>1,6.^BkkUQdrgg=Y'N;qHf:I*f!+6S50<>,FZ1Sg? Gb"0T@?]uh%0fZ.s,UbQdnI5t(J'KpbE6hj[rrq"UaH63][%r*!!'f]O8iC3$>Pa,)hhoIsHCD%^09R?GbRIo[YEJu!1:@U4E[ZMH*T1%\"?9js>Z8S1R1Nu+im6lj]56aL_b^d7]Ru^-V-g@8ihH".^TU0>r*2\lKe8P=%!E`%o[:S^i)D&9!YkG:2$%c\n7nmeTqsMaO%h<276##4_@;I6H_L>2+,'[euOToL)rgbWD17q0iQL4>3:sM)hhoIsHCD%^09R?ETW166P%:p6qm.cQP`LXBjOPONnBP]VSEH),51H`>-B+[)1!.%VD\aaa%T&pBUMB%AuO>3H51G@d)0NS[7PU+AkG*Nb<4316bTYRX,',t*_*309u?3N;pl7]k)leal?0L@73")T0Nq1f&mgWeP)dmEO*&WCYH.=GifKjhd;!E[n9W)K@f41\R,IGZ>>r1!rC;#KaAE[I/RbB%"*]#)_Tk,;0R\=%hlW(kH6P#sBe0a/IQmq8*/b;Nb%/%28Y9FGoH5Nc]2@6S-9M%`fR7Fi#W7TRG'lh=A_e:p88U*C18if;^4OQ)S]roqeLdQn<7]WL__WrpTdLf[FOffSeFgYOE*&@.?>"riH?B:M;cJt8AB;$6kR\=%hlW(kH6P#sBe0a/IQmpY]BX@Q&Ua05%'^KLD3Jf5[KqX:LC'sP=;NdH2NmKPBFNmX`X,Z3dWe_FF*_*1ZbU5qQAr70&!!'gDr0mum!!'Ct+!CUa!5M\6=8`+!!79]N0BfB"W/LUR031h,I/mBp.PAhF2u3M"iWjV_f##BdXfj`JrVJE_f##BdY0jZJ"&k.;*V393uQ.]Klg:TLuRh_]dhE6+l+'FLqCNiP`))>X)Hn\3rVoDB.E345g6haqiKDMC:p6kA%hFhhKZj[QQhU[>tONBqZ7?)Y*KG*\_>erca`NY`QIGB%fjdU`?cDf7N[.Kr1Iq/XIO2)!3htn>`u@0oDqM$&*e>Wb3>c6!6\Na,oQ#l?:.hl)"skb?;e1)='a6J40=.DHEp0DYa@;S5igWZ#917\?\VoJbL('W@KAt:,dS$=O&BKa]LLu!*kp6eD6"IdnLnaQEuHA1=hFK!,SP#_qG&.nEGss/tU.IYthl9(,_P"PMqfYl>AYg)P:lI3*8iZoQ_,-#G&'GJJ?jc&pq6jH#nAX8O.O=EYC6045i\\ndd+;]"6dVQ#f`L=cH5MUg)X;C&LY+mC2KP+2NB8F1+"23mbRP$EQ46]=(9Egr[Rcj9XfnGc\A[#aL_79nllOQJ4HmeZ]lm`spPJd9'.Sq(]Rb1dmq5s"1V7dp8i4:E$_:m+o(Fad%HM!,3m`AK/97^`";?W=OJ,mss8d3Fa5>gX#/_Ddl9Ori5L&4l!qbq[h6/)A?Y&Ap*Q,i-@\QqXB:6#P;_#c'W3mP7*&-0VVHLbBuOfVSFNMIJ?0TVmHE6]];UW[@c!YhoB(')Kj[]Y.9F")I$^'4O=5.lGN)6qq)sE/cJ;bf"Pd'?][,-^U62+90*X5ea2>Va*p2_hq5487NOK\lGN'Pgg,nh*I*qpQYO9@iScQIj2L9s0h0>[pKs"F'r__Y0Bm/e5'a]!_lU;]@-00k3n](0%spuOZ]C0lRFQ_L#CQ21`]L`$a*&f>an$9$[6=MsqDb"q1aREiI'*PoM:T*rfDl*;VP7^70jepGNV0(n,4l1GtP5Y;s[EPIq\6n'0M#POiA)VNJ8iL=j3H42PrjQ2%HU0phV@4Zmo9]%F98&ZsT.o(EQ8hgLfZj=)Ugc+hQI`&P3qie>Z5-R%U[]AR8K_A5Dt*/i3l+OOgQ)TGW>"F8Q`\>c^/T:W?9I(A*5G'\%Z-9LG-`6NQ,HM^2.Q[0jW$`5(9k'U&0=&I)25WS^_ZF;'fIDHY6*6^@,Gs0"$1e9%.=\`fS8>G4";thLnN9.,d\iM7id*F(k6Gl#cMce:-c%=&/-J9OfkRO<5iOGKC*fNrgX*\FT'Vh;fJgA@>:GDWbSna('pkjn@5_ZR;G3$(I5VY2COQld9;:WTeEo7J,-Zg@F6Kji929h$!Q@jQ`oBJA3R1_WKjiCMK'JWgu6K[-PGS%@;2s\A"$7:N'%&9UK%='mug^Cn52e]s^KrmgrcY,PuIO65o9De"k`'fEjU=@K&)ZPRY'!K61$^3s2>5EnBjCf2M2')Q)Df%t-f6b`@++H]I_pXPr,^ung:=c34M4s;>[P\(?=2W#/qq$uVITE90Qn%>N'p/@G0541lg';A&.t%-2cdrX,^n(:q#\7@N!`(255Sj&.zzzz!